Unit cells and space groups of a series of N-(ω-dimethylaminoalkyl)-phthalimide methiodides.* By JAMES E. WEIDENBORNER[†] and L. EDWARD GODYCEI[‡], Chemistry Department, St. Louis University,

St. Louis, Missouri, U.S.A.

(Received 6 January 1961)

Pharmacologic tests have shown that the curare-like activity of a series of monoquaternary N-(ω -dialkylamino-alkyl)-phthalimides of general formula,

is a function of the methylene chain length. Paralyzing activity rises as n increases, reaches a maximum at n=7, 8, and 9, then drops off as the chain length is further increased.

In an attempt to establish the structure-activity relationship, three compounds in a series of N-(ω -dimethylaminoalkyl)-phthalimide methiodides with n = 6, 10 and 11 were selected for X-ray diffraction studies. Crystals prepared by recrystallization from isopropyl alcohol were obtained from Seiwald (1954) of this laboratory. Examination under a microscope showed the crystals to have the shape of elongated and flattened parallelepipeds with six well-developed faces parallel to the (100), (010), and (001) planes.

The Weissenberg technique and, to a lesser extent,

* Based on a thesis submitted by James E. Weidenborner to St. Louis University in partial fulfillment of the requirements for the degree of Master of Science.

[†] Present address: Research Center, International Business Machines Corporation, Yorktown Heights, New York, U.S.A.

‡ Present address: Electro-Optical Systems Inc., Pasadena, California, U.S.A.

Crystal data	6	Chain length 10	11
act to	Ū.	10	
a (Å)	$19 \cdot 62 \mp 0 \cdot 06$	$31 \cdot 6 \mp 0 \cdot 1$	$33 \cdot 9 \mp 0 \cdot 1$
b (Å)	10.27 ∓ 0.04	7.55 ± 0.03	$9{\cdot}52 \mp 0{\cdot}03$
c (Å)	$9{\cdot}86\mp0{\cdot}03$	$9 \cdot 67 \mp 0 \cdot 03$	$7 \cdot 55 \mp 0 \cdot 03$
α (°)	106.9 ∓ 0.5	90	90
β (°)	94.1 ± 0.5	$92 \cdot 6 \mp 0 \cdot 4$	90
γ (°)	$96 \cdot 3 \mp 0 \cdot 5$	90	90
$D_m (g. cm.^{-3})^*$	1.46 ± 0.01	1.35 ± 0.01	$1 \cdot 32 \mp 0 \cdot 01$
D_x (g.cm. ⁻³)†	1.47 ± 0.01	1.36 ± 0.01	$1 \cdot 326 \mp 0 \cdot 01$
Diffraction symbol Probable	$\overline{1}P-$	2/mC	mmPn
space group	$P\overline{1}$	C2	$Pmn2_1$

* Determined by flotation.

† Based on four formula weights per unit cell.

the oscillation method were used to obtain the diffraction photographs. Unit cell dimensions were measured from oscillation photographs and zero-level Weissenberg photographs, using Mo $K\alpha$ and Cu $K\alpha$ radiation. Diffraction symbols were obtained from the level symmetries of the Weissenberg photographs and the observed systematic extinctions. Probable space groups were deduced by a study of molecular models. The results are given in Table 1.

Reference

SEIWALD, R. J. (1954). Ph.D. Dissertation, St. Louis University, St. Louis.

Acta Cryst. (1961). 14, 695

The crystal structure of iridiohexacyanides of divalent cations. By Adolfo Ferrari, Maria Eleo-NORA TANI and EMANUELE MORISI, Institute of Chemistry, University of Parma, Italy

(Received 24 January 1961)

The crystalline structures of the iridiohexacyanides of divalent cations having the formula $Me_3^{II}[Ir(CN)_6]_2$. 12 H₂O, where $Me^{II} = Cr$, Mn, Fe, Co, Ni, Cu, Zn, Cd have been determined. Cu $K\alpha$ radiation was used ($\lambda = 1.5418$ Å).

The compounds were prepared for the first time in this Institute. They are isotypic with the salts of the correspondent series of ferrihexacyanides, cobaltihexacyanides (Ferrari, Tani & Magnano, 1959) and rhodiohexacyanides.

The probable space groups are: $O_h(5)$ -Fm3m and $T_d(2)$ -F43m. The unit cell containing two molecules has the following constants:

The water contained is of zeolitic nature because it can be eliminated without any change in the lattice.

Reference

FERRARI, A., TANI, M. E. & MAGNANO, G. (1959). Gazz. Chim. Ital. 89, 2512.

Table 1. Crystallographic data for $N-(\omega-dimethylaminoalkyl)$ -phthalimide methiodides